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Abstract-Analytical solutions are obtained of transient heat transfer for unsteady incompressible 
laminar flow between parallel plates. The transient is caused by simultaneously changing with time the 
driving pressure of the fluid and the wall temperature. The solution is first obtained for the case where 
the inside surfaces of the channel walls undergo a specified step in temperature, that is, the heat- 
transfer resistance of the wall is neglected. Then some results are given where the temperature is speci- 
fied at the outside surfaces of the walls and the transient heat conduction through the walls is taken 

into account. A few numerical examples are carried out to illustrate the method. 

R&sum&-Des solutions analytiques sont obtenues pour la transmission de chaleur en regime transitoire, 
dans le cas d’un Bcoulement laminaire incompressible non permanent entre des plaques paralleles. Le 
regime transitoire est provoque par des variations simultanees dans le temps de la pression motrice du 
fluide et de la temperature de paroi. La solution est tout d’abord obtenue dans le cas oh les face\ 
internes des parois du conduit subissent un saut donne de temperature, c’est-a-dire lorsque la resistance 
thermique de la paroi est negligee. Puis quelques r&hats sont donnes dans le cas ou la temperature 
des faces exterieures de la paroi est connue et oh l’on tient compte de la conduction de chaleur transi- 
toire a travers les parois. Quelques exemples numeriques sont effect&s pour illustrer la mlthode. 

Zusammenfassung-Fiir den veranderlichen Warmetibergang einer nichtstationaren mkompressiblen 
Laminarstromung zwischen parallelen Platten werden analytische Losungen angegeben. Die An- 
derung wird dadurch hervorgerufen, dass man abhlngig von der Zeit zugleich den Fliissigkeitsdruck 
und die Wandtemperatur variiert. Die Losung ist zuerst fur den Fall angegeben, dass die Innenflache 
der Kanalwand eine bestimmte sprunghafte Temperaturlnderung erleidet, der Warmeleitwiderstand 
der Wand also vernachllssigt wird. Fur einige weitere Ergebnisse ist die Temperatur auf die Bussere 
Wandfllche bezogen und die verlnderliche Wlrmeleitung durch die Wand berticksichtigt. Emige 

numerische Beispiele veranschaulichen die Methode. 

AmoTaqm-B crarbe AaeTcn aeanrrrmfecuoe pemenue aagaqu ueycranonuameroca re~mo- 
IX!pt?HOCa AJlFi HWTaI(IIOHapHOrO JElMRHapHOrO IIOTOKa HW%lMaeMOfi FKKLI@WCTK MWSfiS 

113p3.JlJETIbHbIMH IIJIaCTHHaMII. IkyCTaHOB&IBIIReCH COCTORHIle X&IWOCTII Bbl3bIBaeTCfl 113MI?- 

HPHIleM ~aBJIeH&IfI XKIIAIEOCTLI II TeMIIepaTypbI CTeHKII BO BpeMeHH. %i~klW ptXIIeH3 AJIH C.XyWeB, 

norfia TepMusecnuM conpo~rrin;IenueM crenmr ~nxufo npeaeGpe<ib. a ranme, Horna ero HY~Ho 

JWITbIBaTb. BbIBe~eHHbIe pE4CY~TIlhle I~OPMY.lbI IULUOCTpIIpJ’IOTCEI ‘IIlCJleHHbIMH IlpEIMep3MH. 

NOMENCLATURE 

N, half-width of spacing between parallel 
plates ; 

h n nl, constants in series expansions of steady- 
state eigenfunctions, equation (6) ; 

Cl,, specific heat of fluid at constant 
pressure; 

c,,, specific heat of channel walls; 
d, thickness of channel walls; 

Et. eigenvalue, (i + 4)~; E,, = (nz + &)T; 

E;,. function in problem where both pres- 
sure gradient and wall temperature 
change, equation (7); 

.L constant defined in equation (15a); 

G function in problem where pressure 
gradient changes and wall temperature 
does not change, equation (18); 

k, thermal conductivity of fluid; 

94 
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k, 
P;: 
P. 
4, 

Re. 
s, 

su.3 

T, 

t, 
to. 

t U’r 

t (I’, 17 

X, 

Y. 
4’3 

Greek 
a, 

thermal conductivity of wall; 
Prandtl number of fluid, cDp/k = v/a; 
static pressure; 
local heat transferred per unit area from 
channel walls to fluid; 
Reynolds number, i74a/v; 
friction coefficient defined by equation 
(3); 
shear stress at wall; 
dimensionless temperature, (t - to)/ 

(tu. - to); 
temperature; 
temperature of fluid entering channel 
(a constant); 
temperature at inside surface of wall 
in contact with fluid; 
specified wall temperature before 
transient; 
specified wall temperature during 
transient; 
temperature at outside surface of wall; 
fluid velocity; 
mean velocity before transient ; 
final mean velocity after transient ; 
dimensionless co-ordinate, 8x/3a RePr; 
value of X at 0 = 0 at beginning of a 
characteristic line; 
axial distance from start of heated 
section of channel; 
dimensionless co-ordinate, y/a; 
transverse co-ordinate measured from 
centerline of channel. 

symbols 
thermal diffusivity of fluid, k/pen; 
thermal diffusivity of wall, kr/pLCclr; 
constant defined in equation (16) ; 
dimensionless time, rvla2Pr; 
value of 0 at X = 0 at beginning of a 
characteristic line; 
dimensionless time, n/a2; 
steady-state eigenvalue; 
absolute viscosity; 
kinematic viscosity; 
fluid density; 
density of wall; 
constant defined in equation (1 la); 
time; 
expansion for steady-state eigenfunc- 
tion, equation (7a); average values, 

INTRODUCTION 

Unsteady internal flows with unsteady heat 
transfer are encountered in a wide variety of 
heat transfer devices. Some examples are the 
starting of a rocket engine, shutdown of a 
nuclear reactor, or during changes in propulsive 
power of a vehicle powerplant. There have been 
a number of papers dealing with unsteady heat 
transfer to flows in tubes and ducts, and [I] and 
[2] provide several references on this subject. 
These papers have been restricted to situations 
where the fluid velocity does not vary with time. 
For unsteady velocities, some information for 
flow in a circular tube with a constant wall 
temperature is given in [3]. 

In a previous paper [4] the authors con- 
sidered heat transfer in the thermal entrance and 
fully developed regions for unsteady flow between 
parallel plates where the walls had either a 
constant temperature or had a uniform heat 
flux transferred from them. The transients were 
initiated by simultaneously changing with time 
the fluid pumping pressure and either the wall 
temperature or the wall heat flux. In [4] the 
problem was simplified by using a one-dimen- 
sional (slug flow) approximation for the velocity 
distribution in the channel. Within the limitation 
of this assumption, exact solutions for the fluid 

t temperature distributions were obtained. One 
objective in the present work is to try to account 
for the variation in velocity across the channel 
cross section. A second objective is concerned 
with the heat conduction through the channel 
walls. In [4] the heat transfer resistance of the 
channel walls was neglected so that the thermal 
boundary conditions were assigned at the inside 
surfaces of the walls where they are in contact 
with the fluid. This restriction will be discussed 
in a later section of the paper, and some results 
for a finite wall resistance will be given. 

The configuration selected for analysis is 
shown in Fig. 1. It consists of two parallel 
plates of thickness d with incompressible 
laminar flow between them. An unheated hydro- 
dynamic entrance region is provided between the 
entrance of the channel and the start of the 
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heated section, so that within the heated section 
the velocity is no longer a function of axial 
position along the channel length. The first 
problem that is considered is the transient 
resulting from a step change in time of both the 
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FIG. 1. Parallel-plate channel. 

fluid pumping pressure and the temperature at 
the inside surface of the wall, t,.. The method 
used does not provide an exact solution of the 
governing partial differential equation, but 
involves an integral approximation at one step 
in the analysis. The validity of this approxima- 
tion is tested by comparisons with exact results 
that are available for part of the solution. Then 
the results are extended to consider a change in 
temperature at the outside surface of the wall, 
t:,. and illustrative examples are given. 

TRANSIENT VELOCITY DISTRIBUTION 

Since the convective term in the energy equa- 
tion contains the fluid velocity, the transient 
velocity must first be determined. The equation 
of motion for fully developed incompressible 
laminar flow between parallel plates is given by 

&l 1 8P 8u 
z- 

a-r -- + 
P ax v a-p (1) 

where 8p’piax is a function of time. In the transient 
considered here, the fluid is moving initially with 
a steady mean velocity &. Then the driving 
pressure difference is suddenly changed so that 
the velocity adjusts to a new mean value ii,. 
The solution for the transient has been given in 

[41 as 

U 
_= = ; (1 - Y2) 
u2 

m 

-6(1 -~IC~~~exp(-E1B)cosE,Y (2) 

where the dimensionless variables are defined in 
the nomenclature. In this solution the time 
required for the step pressure change to be 
transmitted throughout the fluid is neglected 
compared with the duration of velocity adjust- 
ment. The final pressure gradient imposed in 
the channel does not appear explicitly because it 
has been taken into account by the stead>-state 
relation, 

Equation (2) will apply for all transients except 
those where the final velocity C2 is zero, which 
occurs when the pressure gradient is dropped to 
zero. For this case we multiply equation (2) by 
z&/C1 and then let U, = 0 to obtain the result, 

Equation (2a) has been plotted as a function of 
Y in Fig. 2 for various 0 values. From these 
results all other transient velocity distributions 
can be found by using equation (2). 

u _= 
“I 

FIG. 2. Transient velocity profiles for case uhere 
pressure gradient is dropped to zero. These can be 
used to find all other profiles by using equation (2). z=ll 
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Wall friction 
During the velocity transient, part of the 

pressure drop is used to change the momentum 
of the fluid and the remainder is used to over- 
come the fluid friction. As a matter of general 
interest we shall look at how the wall friction 
deviates from the steady value during the 
transient. ii wall friction coefficient for laminar 
flow is defined as 

where s, is the shear stress at the wall; 

I% 

and zi is the instantaneous mean velocity. By 
using the velocity as given in equation (2) we 
obtain the expression 

1 - 2il - !!:]C$exp(--E:@ 

s=_ 1 = 0 

cc . Pa) 

This is plotted as a function of 0 in Fig. 3 for 
various pressure gradient ratios. For steady flow 
the value of S is 3. For a flow that is being 
accelerated (dp/dx)Z > (dp/dx),, the friction 
coefficient rises above that for fully developed 
flow and then decreases to the steady value. 
This is caused by the fact that the fluid near the 
wall has a small momentum because of its low 
velocity and hence responds more quickly when 
the pressure force is changed. As a result, during 
the early part of the transient, the wall shear 
stress approaches the final value more rapidly 
than the mean fluid velocity, resulting in higher 
instantaneous values of the ratio S. During a 
deceleration the derivative at the wall decreases 
more rapidly than the mean velocity, and hence 
the friction coefficient goes through a minimum. 

TRANSIENT HEAT TRANSFER FOR ZERO WALL 

RESISTANCE 

The transient heat transfer results given in 
this paper are caused by a step change with time 

of the wall temperature in the heated section of 
the channel. In this section we consider a wall 
that is either very thin or has a very high thermal 
diffusivity so that the inside surface of the wall 
in contact with the fluid instantaneously reaches 
the value of the imposed wall temperature. The 
most general solution for this case is formed 
by superposing two more elementary results. 
These will be given first, and then the super- 
position will be described. 

Step change in time of both pressure gradient and 
wall temperature from an unheated initial 
condition 

Before the transient begins, the fluid is moving 
in a steady fashion with a mean velocity ii1 that 
can also be zero as a special case. The walls of 
the channel are unheated, and the whole system 
is at the entering fluid temperature t,. Then the 
pressure gradient in the channel is abruptly 
changed so that the fluid velocity undergoes a 
transient to a new mean velocity W,. At the same 
instant that the pressure gradient is changed, the 
temperature at the inside surface of the wall in 
the heated section of the channel is changed to a 
new value tu,,z. It is desired to compute how the 
heat transfer to the fluid varies with time and 
location along the channel. 

In the analysis it is assumed that the fluid has 
constant properties. Axial heat conduction and 
viscous dissipation are neglected compared with 
heat conduction in the direction across the 
channel. With these restrictions, 
equation for forced convection in 
can be written as 

the energy 
the channel 

(4) 

The unsteady velocity distribution equation (2) 
is then inserted, and the resulting equation is 
placed in the following dimensionless form : 

I--2-4 l-2 
( ? 

CO 

x -~ exp (- E,2PrO) cos E, Y 
I 

k: = $g. 

i-o 
(44 
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FIG. 3(a) Friction coefficients as a function of time 
for various pressure-gradient ratios. 
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FIG. 3(b) Friction coefficients as a function of time for various pressure-gradient ratios. 
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This equation is to be solved subject to the 
boundary conditions : 

T=OatX=Oforall Yand0, 
entrance condition (5a) 

T = 0 at 0 = 0 for all Y and X, 
initial condition (5b) 

T = 1 at Y = 1 for all X and for 0 > 0, 
specified wall temperature (5~) 

,$ = 0 at Y = 0 for all Xand 0, symmetry (5d) 

To obtain a solution to equation (4a), we first 
consider the steady-state solution in the thermal 
entrance region for flow between parallel plates 
with a constant surface temperature. One form 
of this solution has been given in [2] as 

T, = 1 
J 4 

b 
F cos E, Y b,, exp (- h:X). (6) 

?I0 
n=n WI=0 

The summation in parenthesis is a series expan- 
sion for the eigenfunctions that arise from the 
product solution of the steady-state partial 
differential equation. The coefficients b,,/b,, 
and bno, and the eigenvalues hi are given in 
Table 1 for a five-term expansion. This form of 
the steady solution is convenient for the present 

analysis as it enables the transient solutions to 
be carried out analytically rather than 
numerically. 

Following the method given in [2], a transient 
solution is tried of the same general form as 
equation (6) : 

4 

T = 1 - zbno I&( Y) F,(X,O) 

n=O 

(7) 

where for convenience we let 

&b 
y&(Y) = &fcosE,Y. (74 

n 
wz=o 

Equation (7) already satisfies the boundary 
conditions (5~) and (5d). When 0 is very large, 
F, should converge to the steady result, 
exp (- h:X). To obtain the F,, an approximation 
is made that the transient solution is only 
required to satisfy an integrated form of the 
energy equation. The validity of this approxima- 
tion will be discussed a little later. The integrated 
form of equation (4a) is 

& 
s 

‘TdY+;gx ‘;TdY=% 
0 s 0 2 I aY y-1’ (8) 

The trial solution equation (7) is substituted into 
equation (B), which yields a partial differential 
equation for F,, : 

Table 1. Coeficients in five-term approximation for flow between parallel plates 
.A_ 

n b ncl ~ balbn, 
/ bneibm ( bmlbn, bdbn, 

-~ 

0 1.17776 : 0.0211834 

zz;; 1 

-0~00113896 00lO207037 -0*0000586707 
1 0.0579815 j -5.37195 -0.838971 0.0230766 -0m930795 
2 

I 
0*0165696 

0.0138607 ~ 

9.45808 3.31526 0.101483 
3 0+)0706883 7.94700 -12.0113 -7.12402 
4 6.61879 - 1 I .0745 13.7624 

--_ 

?I J!: 0, t% 1 f 
____ I " 

0 2.82776 2.30858 2.82948 1.22564 
1 32.1475 11.9441 32.3656 2.70975 
2 93.4792 24.9156 95.2824 3.82421 
3 187.388 37.4291 178.074 4.75764 

_.4 I 414.761 92.5592 608.811 6.57754 

_~ -___ _.~_______ 
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(9) 

This type of equation can be treated by using 
the method of characteristics (Ref. 5, p. 371). 
According to this method, the following set 
of auxiliary ordinary differential equations is 
formed from the coefficients in equation (9): 

d@ dX dF, 
-_-=-=--- 
+L ;; #, d*?l 

I 

(10) 

2 Fn dY ycl 

where a bar has been used to abbreviate the 
integral notation (e.g. & = J& dY). If the first 
two terms of equation (10) are integrated, 
equations for characteristic curves on the X,0 
plane are obtained as shown schematically in 
Fig. 4. There is a different set of characteristic 

REGION II 

I 
/TYPICAL 

where 

ui7 = -- 
1 d&z 

&, dY Y-I 
(114 

Numerical values of un are given in Table 1. 
The condition that Fn = 1 at 0 = 0 is imposed 
to fulfill the initial condition (5b) which is satis- 

fied because 1 - i h,,&(Y) = 0 as given by 

equation (6) at X i 0. The indicated integration 
in equation (11) is carried out to yield F, in 
region I: 

F,, = exp (-a,@). (12) 

To determine F, in region II, the first and last 
terms in equation (10) are equated and then 

REGION II CHARACTERISTICS 

DIVIDING CHARACTERISTICS 

-n =O 

FIG,. 4. Characteristic lines on X-Q plane. 

curves for each value of n. The characteristics 
beginning at the origin divide the plane into two 
regions: In region I the curves originate at the 
X axis, while in region II they originate from the 
0 axis. By equating the last term in equation (10) 
with either of the other two terms, an equation 
for the F, variation along the characteristic 
curves is obtained. 

To determine F, in region I, the first and last 
terms in equation (10) are equated and inte- 
grated : 

s F, dF, 

s 

8 
-_=--(T 

IF, no 
d@ (11) 

integrated along a region II characteristic curve: 

The boundary condition F, = 1 at 0 = O,, 
where 0 = 0, corresponds to X = 0 on the 
characteristic curve, fulfills the entrance con- 
dition (5a). Integrating yields 

F, = exp [-a,(@ - O,)]. (14) 

The arbitrary starting value 0, must now be 
eliminated, and this is accomplished by utilizing 
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the equation of the characteristic curves origi- 
nating at 0,. This is found by integrating the 
first two terms in equation (10): 

I=@ .G-- 

(15) 

After carrying out the integrations, this becomes 

x [exp (- Ez Pro) - exp (- Ek PI@,)] (15a) 

where 

4 (-l)m c ~-- 
Em 

m=o -~- 

2$(-l)m 

tie Ei 

bn*n 
b ?ZO 

b n m 

b ?LO 

and 

m=O 

Numerical values of fn are given in Table 1. 
Equation (14) is then solved for O,, and this is 
substituted into equation (15a) to yield the 
foIlowing implicit expression for Fe as a function 
of X and 0 in region II: 

hQ=n 
-EzPr--- 

%z )I i16) 
where 

The values of /?X are given in Table 1. At steady 
state, since 0 is very large, the solution is found 
in region IT, and equation (16) applies. When 0 
is very large, the exponential term drops out and 
the equation reduces to 

F, = exp (--/3:X). 

The steady-state solution equation (6) gave 
F, = exp (-QX), and it is shown in Table 1 
that the fl: values are in good agreement with 
the hi except for large IZ. If a larger number of 
terms were used for the series expansion in equa- 
tion (6), then the agreement would improve, since 
the series approximation, t,&, for the eigenfunc- 
tion would more closely approximate the exact 
function. As discussed in. [2], if the exact eigen- 
functions had been used, then /3: would equal 
AZ,. Hence, within the limitation of the five-term 
approximation used here, the solution equation 
(16) approaches the exact solution at large time. 
The steady state results for the five-term approxi- 
mation agree within a few per cent with the 
results in [6] and [7]. 

We can now summarize the solution. For each 
value of n, the X,0 plane is divided into two 
regions by the characteristic curve passing 
through the origin. This dividing curve is given 
by equation (15a) with O. set equal to zero. 
For early times so that the solution is found in 
region I (Fig. 4) below the dividing characteristic, 
equation (12) is used for F,. For later times so 
that the solution is found in region II above the 
dividing curve, equation (16) is used for F,,. 
For each F,, there is a different dividing charac- 
teristic curve. The F, are then summed according 
to equation (7) to yield the transient temperature 
distribution. 

The heat transferred from the wall to the fluid 
is obtained from Fourier’s law: 

at 
a = k --- I . 

By differentiating equation (7) and substituting 
into this relation, the heat flow becomes 

9a -_ -____- 
k(t,,, - to) 

b,, $ E,(-1)” F,. (17) 

To provide an illustrative example, this 
expression has been evaluated for a case when 
z& = 0; that is, initially there is no flow and both 
the channel and fluid are isothermal at t,. Then 
a pumping pressure is suddenly applied, and 
simultaneously the wall temperature in the 
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heated section is stepped to t,,z. The resultant convection term drops out of the energy equa- 
transient wall heat transfer for a fluid with tion. Hence, if the solution were exact, the curve 
Pr = O-7 is shown in Fig. 5. At each axial loca- moving downward at the left side of Fig. 5 
tion the heat transfer goes through a minimum would be in agreement with the transient heat 
and then rises to the steady-state value. This conduction into a solid slab of thickness 20. 
type of behavior has been previously demon- which is initially isothermal at temperature t, 
strated in [4], where a slug-flow approximation and then receives a step in the surface tempera- 

3 
tt 

----- CONDUCTION SOLUTION 

t 

AXIAL POSITION, 

X=8 
3z-&m 

DIMENSIONLESS TIME, 0 = + 
a (07) 

FIG. 5. Transient wall heat flux after a step change in pressure gradient and 
wall temperature. Pr = 0.7; initially: u = u - 0, 1, = t,,l = t,; finally: 

u = US, t, = t,,:.- 

was used for the velocity distribution. As pointed 
out in [2], for early times the heat transfer 
results for the example treated here can be 
predicted from the transient heat-conduction 
equation. This is due to the fact that after the 
initiation of the transient, the heat transfer at a 
given location proceeds as if the tube were of 
infinite length until fluid that was outside the 
entrance of the heated section at the start of the 
transient reaches that location. For this early 
part of the transient, there is no variation in 
temperature in the axial direction, and the 

ture. This conduction solution is shown dashed 
in the figure, and the approximate solution is in 
good agreement with it. Thus, the transient 
solution obtained here yields good results for 
small times and also for large times as dis- 
cussed earlier. 

Step change in pressure gradient with no change 
in wall temperature 

Another type of transient will now be con- 
sidered that can be superposed with the results 
in the previous section to solve a very general 
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case. The channel walls in the heated section are 
initially at a constant temperature different from 
that in the isothermal hydrodynamic entrance 
region, and there is a steady-state heat transfer. 
Then the pumping pressure is suddenly changed 
so that the flow velocity undergoes a transient 
change to a new steady value. Throughout the 
process the wall temperature is maintained at its 
original value. 

A solution is tried that has the same form as 
equation (7) : 

The boundary conditions to be satisfied are the 
same as equations (5), except for the initial 
condition (5b). Since at time zero there is a 
steady heat transfer taking place, we have from 
the steady solution equation (6) that 

G, = exp [- X2,(d,/Z,)X] at 0 = 0, 

initial condition. (19) 

The ratio 1,/z& appears because X has been non- 
dimensionalized on the basis of i&, while at 
0 = 0 the fluid mean velocity is Cl. The trial 
solution equation (18) is substituted into the 
integrated energy equation (8), and the resulting 
partial differential equation yields the same 
auxiliary ordinary equations as in equation (lo), 
with F, being replaced by G,. Since the only 
boundary condition that has been changed is the 
initial condition, the expressions for the charac- 
teristic passing through the origin and for G, in 
region II are the same as those for the F,, in the 
previous section. Hence, we only have to be 
concerned with region I. 

For a characteristic curve in region I, the 
first two terms of equation (10) are integrated 
starting from a point 0 = 0, X = X,,. This gives 

2 l-2 
( -1 X_&=Q_t__ u2 

fn Pr J,, 

X c C-1)” km -.-- -b,o [exp (-Ez Pro) - 11. 
J% 

(20) 

To obtain the variation in G, along a charac- 
teristic in region I the first and third terms of 
equation (10) are integrated as follows : 

J Gn dG _ 
--(T J 

8 
exp [- h~(ti,/i&)X,] G, n o 

d@. (21) 

This gives 

G, = exp [--a,@ - X~(ti,/QX,]. (21a) 

This is solved for X,,, and the result is substituted 
into equation (20) to eliminate the arbitrary 
starting point X,,. The final expression for G, in 
region I then becomes 

tlL=O 

x [exp (-EzPr@) -11. (22) 

Now that the G, are known, we can use 
equation (17) with G, substituted for F, to 
evaluate a numerical example. The example 
chosen is where the pressure gradient is given a 
step from an initially zero value. This means 
that, before the transient begins, there is no 
flow ; and hence the heated section of the channel 
is filled with fluid at the wall temperature, which 
is different from the outside fluid temperature, 
and there is no heat transfer taking place. When 
the flow begins there is a transient period during 
which the fluid in the heated section of the 
channel is being swept out by fluid entering at 
t,. During this early transient period no heat is 
being transferred. After this period, which 
occupies region I, heat flow begins, and the heat 
transfer rises toward the steady value. The 
results for a few axial locations and for Pr = 0.7 
are shown in Fig. 6. The slight discontinuities 
in derivative on the curve for X = 0.03 occur 
where successive terms of the series in equation 
(17) are added together. 

Step change in both pressure gradient and wall 
temperature with initial steady heating 

The results given in the two previous sections 
can now be superposed to solve a more general 
situation. In this instance, there is initially a 
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FIG. 6. Wall heat transfer after a step change in pressure gradient with the 
wall temperature kept constant (tzU,% = t,,,). Pr = 0.7; initiafiy: II = it1 = 0; 

&ally: a = I&. 

steady heat transfer taking place. Then both the These results are then added to yield the genera! 
wall temperature in the heated section and the solution: 
pressure gradient are suddenly changed to new 
values. The superposition used for this solution 
is illustrated in Fig. 7. The solution for the first tu,,2 - t, 
part of the figure is given by the results of the 

* I’!.. =_ ($$I;‘i’.) 

first of the two preceding sections : x fl ” x ~~~~*~~~ ~sf-vm 
91=if 

The solution for the second part of the figure is 
given by the results in the preceding section: TRANSIENT HEAT TRANSFER FOR FZlr;ITE WALL 

RESISTANCE 

t = (f$#J - to) fl - 3! ~,&~~ q t;,(X@>l c t,, 
For the soIutions in the previous section, the 

w=:cl temperature f , at the inside surface of the wafl 
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FIG. 7. Superposition of solutions for changing both pressure gradient and wall temperature. 

was specified in the boundary conditions. We 
would now like to investigate the influence of a 
channel wall of finite thickness and finite thermal 
diffusivity where the temperature ti at the out- 
side surface is specified. In what follows we shall 
obtain part of the transient solution, and this 
will give an indication of how the additional 
factor of heat transport through the wall 
influences the transient response in the fluid. 

The situation considered is as follows. The 
channel walls and fluid are initially isothermal 
at t, and there is no flow. Then both the outside 
surface temperature of the wall tz in the heated 
section and the pressure gradient are simul- 
taneously stepped to new values. As discussed 
previously, there follows an initial transient 
period of pure conduction in the fluid, and this 
continues at a given location until fluid that was 
originally outside of the heated section when the 
transient began reaches that location. Hence, for 
this initial period, if free convection is neglected 
the problem can be treated by considering the 
transient conduction through a two-layer slab. 
The first layer is the channel wall, and the 
second layer is the fluid contained between the 
wall and the center of the channel cross section. 
The boundary conditions are that the outside 
surface of the composite slab is suddenly given a 
step in temperature while the inside surface is 
kept perfectly insulated, which corresponds to 
the zero derivative in the fluid temperature dis- 
tribution at the channel centerline. An analytical 

solution for this transient-conduction solution 
has been given in [8]. The heat transferred from 
the inside surface of the wall to the fluid is given 
by the relation 

P k,a m PwCzc~m t PQ% 
j@gJ =-j&j c 

____ _.. _..._._ 

PwCw&n + PGJ&n 
n-1 

x (AIn cot L&J exp (-5:~) (24) 

where the coefhcients are found from 

Nln = I;I’- [sin A,, + cot cl,,(cos il,, - 1Jl 
l?l 

I$,% = c [sin A,, - tan &,(cos & - I)] 
2% 

d 

+ (1 - cot2il,,) sin Ll,, cos fl,, 

- 2 cot .4,, sina&] 

a 
& = 2n, IU + taa24d~,, 

+ (1 - tan2il,) sin ~4, cos A,, 

+ 2 tan A,, sin2.4,,]. 

The A,, are eigenvalues, which are determined 
from implicit equation 
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When the A,, are known, the A,, are then 
obtained from 

and the 6, are given by 
1~ - 

Z’a, 
6, = d- A,,. 

Two numerical examples were carried out to 
illustrate the transient process. The fluid in the 
channel was taken to be air at 170°F with the 
following properties: c, = O-241 Btu/lb “F, 
p = 0.0623 lb/ft3, and k = 0.01735 Btu/h ft “F. 
The channel walls were taken to be stainless 
steel (18 Cr-8 Ni) with the following properties: 
c,, = 0.11 Btu/lb “F, put = 488 lb/fP, and 
k,,. = 10 Btu/h ft “F. The channel half-width 
was fixed at a = + in and two wall thicknesses 
were used : d = & and & in. The heat conducted 

4 

r 
----- PRESENT 

from the wall to the fluid is given as a function 
of time by the solid lines in Fig. 8. The series in 
equation (24) was evaluated for the first four 
terms, which brought the conduction curves 
back to sufficiently early times for the examples 
given here; and the curves were then extended 
approximately to the origin. These conduction 
curves give the exact transient solutions for the 
forced-convection problem during the initial 
transient period. This period ends when fluid 
that was originally outside of the heated section 
starts to affect the heat transfer at a given point. 
and the time at which this occurs is given by the 
characteristic curve passing through the origin 
of the X-O plane for fz = 0. These times corres- 
pond to the minimum points of the curves for 
d = 0 obtained earlier and shown again in Fig. 8. 
For each axial position, the pure conduction 
curve in the complete solution terminates at the 
time corresponding to this minimum point. 

THEORY FOR d = 0 

t 

- CONDUCTION SOLUTION 
-.- APPROXIMATE TRANSIENT FOR d =$ 

- - APPROXIMATE TRANSIENT FOR d = 6 

d=O 

AXIAL POSITION, 
8 

X=3 s&m 

DIMENSIONLESS TIME, Q = z 
a*(071 

FIG. 8. Effect of channel wall thickness on transient heat flux from stainless steel walls 
to air for a step change in pressure gradient and outside wall temperature. Pr = 0.7; 
initially: u = u1 = 0, tz = r:,, = lo; finally: u = u,, tz = r&,. Channel half width, 

a = 6 in. 
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For large times, study-state results must be 
achieved. For a finite wall resistance, the steady 
solution has been given in [6]. For the numerical 
examples given here, the wall resistance is 
sufficiently small that the final steady-state 
solution is uninfluenced by it, and the results 
for large times are the same as for the case with 
d = 0. For finite wall resistance we now have the 
solution for small and large times, and the time 
is known at which the initial period of pure 
conduction ends. For zero wall resistance we 
have the complete transient solution. Using this 
complete solution as a guide, the results for 
intermediate times are faired in for the finite wall 
resistance examples as shown in Fig. 8. 

In some instances the presence of the wall 
has a considerable influence. Consider for 
example the curves for X = O-1. For d = 0 the 
heat flux starts from infinity, decreases with time 
to a minimum during the initial period of pure 
conduction, and then increases to the final 
steady value. When a wall of thickness d = & in 
is introduced, the heat transfer to the fluid is 
initially zero. Then during the initial conduction 
process the heat flux rises rapidly to a maximum 
and then begins to decrease as the fluid tempera- 
ture approaches the imposed outside wall 
temperature. For this example the fluid convec- 
tion does not begin to have an influence until 
after the maximum in the pure conduction 
curve has been reached. Hence the heat transfer 
goes through a minimum and then the convection 
raises it to the final steady value. For d = & in 
the heat comes through the wall so slowly that 
the heat flux by pure conduction is still increasing 
at the time that the convection begins to have an 
effect. Consequently, the heat flux rises from 
zero toward the steady value without passing 
through a minimum. 

To have an indication of the actual time 
response in the channel, we note in Fig. 8 that, 
for the axial positions considered, the important 
transient effects occur during a dimensionless 
time 0 of about 1.0. Using a = 4 in and 
v = 22.38 x 1O-5 fP/sec, this yields a value for 
T of about 6 sec. Hence for this example the 
transient period is quite short. 

CONCLUIXNG REMARKS 

Results have been presented for transient heat 

transfer arising from simultaneous changes with 
time of the channel wall temperature and fluid 
pumping pressure. In a previous paper [4] this 
type of transient solution was found for a one- 
dimensional velocity distribution in the channel, 
and the present work takes the two-dimensional 
velocity distribution into account. The present 
solutions exhibit the same general transient 
behavior as those in [4]. A method for investi- 
gating the effect of the heat-flow resistance of 
the channel walls has been demonstrated; and, 
as would be expected, this resistance can cause 
substantial changes in the heat transfer response. 
This is due to the fact that during the time delay 
required for the heat to flow through the wall the 
velocity is completing part of its transient. 

This type of analysis is not restricted to abrupt 
pressure changes as considered here, but can 
also be carried out for other timewise pressure 
variations. Other types of boundary conditions 
can be treated for specified wall temperatures, 
such as one wall at uniform temperature and 
the other insulated. The analysis can be carried 
over in a straightforward fashion for the circular 
tube geometry. 

ACKNOWLEDGEMENT 
The authors would like to thank Miss Frances J. 

Schubert and Miss Eileen M. Norris who programed the 
machine computations for the examples presented here. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

REFERENCES 
V. S. ARPACI and J. A. CLARK, Dynamic response of 
heat exchangers having internal heat sources-Part Hi, 
J. Heat Transfer, C 81, 253 (1959). 
R. SIEGEL, Heat transfer for laminar flow in ducts with 
arbitrary time variations in wall temperature, J. Appf. 
Mech. E 27,241 (1960). 
K. MILLSAPS and K. POHLHAUSEN, Heat transfer to 
Hagen-Poiseuille flows, Proc. C’onf. on Differential 
Equations, pp. 271-294, Univ. of Maryland (1955). 
M. PERLMUTTER and R. SIEGEL, Unsteady laminar 
flow in a duct with unsteady heat addition. ASME 
paper no. 60 WA-174, to be published in J. Heat 
Transfer. 
F. B. HILDEBRAND, Advanced Cabxlus for Engineers. 
Prentice-Hall, New York (1949). 
J. A. W. VAN DER DOES DE BYE and J. SCHENK, Heat 
transfer in laminar flow between parallel plates, Appl. 
Sci. Res. A 3, 308-316 (1953). 
C. S. YIH and J. E. CERMAK, Laminar heat convection 
in pipes and ducts, Report No. 5, Civil Eng. Dept., 
Colorado Agricultural and Mechanical College, Sept. 
(1951). 
E. MAYER, Heat flow in composite slabs, J. Amer. 
Rocket Sot. 22, 150 (1952). 


